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Dual Graph Diffusion Model for Social Recommendation
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Abstract

Graph-based social recommender systems utilize user-item interac-
tion graphs and user-user social graphs to model user preferences.
However, their performance can be limited by redundant and noisy
information in these two graphs. Although several recommender
studies on data denoising exist, most either rely on heuristic as-
sumptions, which limit their adaptability, or use a single model
that combines denoising and recommendation, potentially impos-
ing substantial demands on the model capacity. To address these
issues, we propose a dual Graph Diffusion Social Recommender
(GDSR), which consists of two steps: graph denoising and user
preference prediction. First, we design a denoising module which
exploits a dual diffusion model to alleviate noises in the interac-
tion and social graphs by performing multi-step noise diffusion
and removal. We develop three kinds of conditions to guide our
dual graph diffusion paradigm and propose a cross-domain signal
guidance mechanism to enhance the structure of denoised graphs.
Second, we devise a recommender module that employs a dual
graph learning structure on denoised graphs to generate recom-
mendations. Moreover, we use additional supervision signals from
the diffusion-enhanced data augmentation to introduce a graph
contrastive learning task, enhancing the recommender module’s
representation quality and robustness. Experiment results show
the effectiveness of our GDSR. We release the anonymous code for
reproducibility at https://anonymous.4open.science/r/GDSR-www.

Keywords

Recommender Systems, Denoising.

1 Introduction

Social recommender systems, which are designed based on social
influence and homophily theories [30, 31], utilize user-item inter-
action data and user social networks for recommendation. Early
efforts utilize matrix factorization to integrate social data into user-
item interaction modeling [11, 16, 28]. Recently, graph-based social
recommenders, which utilize graph neural networks (GNNs) to
model user high-order preferences and social influence propaga-
tion in the interaction bipartite graph and social graph structures,
have become mainstream and achieved impressive progress [21, 37].

Despite their effectiveness, the performance of graph-based so-
cial recommenders can be limited by the presence of redundant
and noisy information in both the user-item interaction graph and
the social graph. Specifically, interaction data may not accurately
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reflect users’ true preferences due to inadvertent or erroneous inter-
action behaviors [32, 40]. Furthermore, recommender models may
be biased by fake interactions created by malicious users [10, 57].
Additionally, social relations might also be inaccurately established,
as users on social media might unintentionally follow or be followed
by bots or fake accounts [24, 29], introducing bias into user mod-
eling. Compared to traditional social recommenders, graph-based
ones are potentially more vulnerable to such noise due to their
neighborhood aggregation-based message-passing mechanism in
GNNs, which enlarges the impact of noise on learning user and item
representations. Thus, enhancing the robustness of graph-based
social recommenders against noise in graphs is crucial.

Previous methods to reduce noise in recommendation data are
typically classified into two categories [58]. One school is based
on data cleaning, which includes resampling [3, 4] and reweight-
ing [34, 44, 47] strategies. Resampling identifies noise and focuses
on cleaner data for model training, while reweighting uses all the
data but assigns lower weights to potentially noisy data. How-
ever, since these methods often depend on heuristic assumptions
[44, 47] related to noise distribution, data cleaning-based methods
require fine-grained adjustments to suit different backend models
or datasets, limiting their adaptability [58]. The second research
line is from the model perspective, enhancing the inherent noise
resistance of recommenders [9, 48, 51]. Specifically, these meth-
ods first augment data by adding random noise [51] or discarding
positive signals [9, 48], and then train recommender models with
the augmented data to learn robust data representations. However,
these model perspective-based approaches rely on a single model
to reduce noisy data and generate recommendations, which may
impose substantial demands on the model representation ability.

Diffusion model (DM) is a powerful type of generative model that
has achieved state-of-the-art results in various research domains
[25, 35, 36, 41]. DMs operate through forward and reverse processes,
both of which inherently enhance denoising capabilities [13, 58].
In the forward process, DMs continuously introduce noise with
controllable scales, which increases noise diversity. In the reverse
process, DMs simplify the denoising task by breaking it down into
multiple steps, each reducing the denoising difficulty. Recently, sev-
eral studies attempt to integrate DMs with recommender systems
[20, 22, 45, 58]. However, we believe they are not well-suited for
graph-based social recommendation. Specifically, they do not focus
on denoising from a graph structure perspective, and they lack spe-
cific adaptations (e.g., condition guidance) designed for the social
recommendation task. The above analysis inspired us to design a
DM paradigm specifically tailored for social recommendation.

To this end, in this paper, we propose a new graph-based so-
cial recommendation method called dual Graph Diffusion Social
Recommender (GDSR), which contains a denoising module and a
recommendation module. (1) In the denoising module, we design a
dual DM structure, including a collaborative diffusion model (CDM)
and a social diffusion model (SDM), to denoise the user-item in-
teraction graph and the user-user social graph. Specifically, CDM
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and SDM first corrupt the initial interaction and social graphs by
gradually injecting Gaussian noises, respectively. After multiple
noise accumulation, CDM and SDM iteratively remove noises by
using a denoising neural network to generate denoised interaction
and social graphs. To guide the reverse denoising process, we de-
sign three types of conditional information: global graph semantics,
personalized information, and cross-domain knowledge signals,

rather than relying solely on pure noise. Additionally, we develop a

signal guidance mechanism that establishes collaboration between

the CDM and SDM, leveraging cross-domain semantic signals to
improve the denoised graph structures. (2) In the recommendation
module, based on the denoised graphs, we employ a dual GNN
equipped with a gated interaction mechanism to learn user and
item representations for recommendation. The gated interaction
mechanism facilitates knowledge sharing during the learning pro-
cesses of two graphs. Moreover, we introduce a diffusion-aware
graph contrastive learning task that enhances the representation
quality and robustness of the recommendation module based on
diffusion-enhanced data augmentation. We conduct extensive ex-
periments on three datasets, and the results show that our GDSR
outperforms several strong baselines. Ablation studies and case
analyses are further performed to better understand our GDSR
design and demonstrate the effectiveness of its key modules.

To summarize, our contributions in this work are as follows:

o We propose a social recommender GDSR, which integrates de-
noising and recommendation, enhancing data and recommenda-
tion quality via a dual DM and graph learning architecture.

e We develop a graph denoising approach that leverages dual DMs
with the tailored guidance strategy for social recommendation,
effectively alleviating noise in interaction and social graphs.

e We introduce a dual GNN structure with a diffusion-aware graph
contrastive learning paradigm to model user preferences.

2 Preliminary

In this section, we first present some key definitions, followed by
an introduction to the background of the diffusion model.

2.1 Notation and Problem Formulation

This section introduces the key concepts of the paper and formu-
lates the definition of the social recommendation task. We detail
the key notation table of this paper in Appendix A.

User-Item Interaction Graph. Given a user set 2/ and an item
set V, we define the interaction matrix Y € RIUXIVI| where an
entry y,, = 1 denotes an interaction relation between user u € U
and item v € V, and a value of zero indicates no interaction. From
the perspective of graphs, we could transform interaction matrix Y
into bipartite graph structure Gg = (U U V,Y).

User-User Social Graph. The user social relation can be repre-
sented as a matrix § € RIUXIUI with suw = 1 showing a follow or
trust relation between users u and u’, and zero otherwise. Similarly,
matrix S can be converted into a social graph G = (U, S).

Task Description. Given the user-item interaction graph Gg
and user-user social graph Gg, our goal is to first generate two
denoised graphs Gg+ and G g+, and then learn a prediction function
F: Juo=F (4,v]0,Y, Gg+, Gs+), where 5 is the probability that
u will engage with v, and © is the parameter of function 7.

Anon.

2.2 Diffusion Model

Diffusion model (DM) includes forward and reverse processes.

o Forward process. Given a data sample x, the forward process
gradually introduces Gaussian noise with controllable scales and
steps over T iterations, increasing noise diversity [13, 45, 58]. Specif-
ically, the transition from x;_1 to x; is defined as follows:

q(xtlxs—1) = N(xg; V1 = Brxs—1, i), (1)

where t € {1,2,--- T} is the diffusion step, f; € (0, 1) is the Gauss-
ian noise scale introduced at each step t, I is the identity matrix,
and N is the Gaussian distribution and it is used to sample x;.

o Reverse process. This process iteratively denoises the noisy data
xT according to the sequence xT — x7_1--- — xo [13, 45, 58].
Specifically, DMs learn the denoising process x; — x;_1, as follows:

po(xt-1lx:) = N(xr—1; pg(xs, t), Xg(xs,1)), (2)

where pg(x;,t) and Xy(x;, t) are the mean and covariance values,
predicted by a neural network with parameters 6. To maintain
training stability, the learning of Xy is commonly ignored [13],
while mean pg can be further factorized as follows:

1 1—-o;
Ho(xt,t) = — |xt — ————e€g(xz,1)|, ®)
Vat V1—a;
where ay = 1 - f, ar = Hi,zl ap and €y learns to predict the
source noise € ~ N(0, I) determining x; from xq [26].
e Training. The denoising neural network 6 can be trained using
the following simplified objective function [14, 54]:

Lo =Erenon |l €~ eolxe, 1) 7], 4)

where t is sampled from {1, ..., T} uniformly.

3 Methodology

Our GDSR consists of two components: a denoising module and a
recommendation module. The former devise a dual diffusion model
(DM) to denoise the original interaction graph and social graph. The
latter introduces a dual graph learning framework with a diffusion-
aware graph contrastive task to model user preferences based on
the denoised graphs. Figure 1 shows the architecture of our GDSR.

3.1 Denoising Module

This subsection first introduces the denoising module’s two parts:
dual DMs and the cross-domain signal guidance mechanism. Next,
we describe the training process of the denoising module.

3.1.1 Dual Diffusion Models. Inspired by the effectiveness of
diffusion models (DMs) in data denoising [13, 35, 36, 45], we propose
a dual DM structure consisting of a collaborative diffusion model
(CDM) and a social diffusion model (SDM). This dual structure
aims to mitigate the negative impact of irrelevant or noisy data
in social recommendation. Specifically, CDM generates a denoised
interaction graph Gg- from the original interaction graph Gg.
Similarly, the SDM denoises the original social graph Gg to obtain a
cleaner graph G g-. Both CDM and SDM employ a forward process
that gradually introduces noise to the initial graph data. Then,
they utilize a reverse process to gradually recover original graphs,
effectively reducing the impact of noisy signals. Next, we introduce
the forward and reverse processes for our dual DM model.
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Figure 1: The structure of our GDSR, which contains a denoising module ((a)&(b)) and a recommendation module ((c)&(d)).

o Forward process. In CDM, we use C(,:{cu,o}'fﬂl to denote user
neighborhoods in Gg, where ¢, o=[cL,c, -, cl)'] is user u’s neigh-
bors over item set V and ¢, = 1 or 0 implies whether u interacts
with item i or not. Starting with the state Cp, the forward transition

is performed independently on each user neighborhood as:

U] |U|
9(Cr1Ce-1) = [ | alewtlew,i-1) = | | New,s; V1= Brew, -1, Be 1), (5)
u=1 u=1

Similarly, in SDM, user neighborhoods in G g is denoted as S,=
{su,o}fﬁl, where s, o=[sL,s2, --,s/%11 denotes user u’s neighbors over
user set U and s, = 1 or 0 indicates whether user u has social

relation with user j or not. The forward transition in SDM is as:

|U| |U|
0(Se1Se-1) = [ | aCsuelsue-0) = [ | Msu, s V1= Brsu 11, B ). (6)
u=1 u=1

o Reverse process. After obtaining the noise-added user interac-
tion neighbor C7, we denoise them in the reverse process, as:

|U| [U|
po(Cet1CO=[ | polcu.-11C=] | Neu.1-1: po(Crs 1), Zo(Cr 1)).
u=1 u=1

where py and Xy denote the Gaussian parameters outputted by the
our denoising neural network in CDM with parameter 6.
Similarly, in SDM, the reverse process from St is defined as:

[U| U
Py(Se-11SO=] [ Py (su =118 = | NMsur-1: 1y (St 1), Ty (St 1)).
u=1 u=1

where ¥/ is the parameter in SDM’s denoising neural network.

o Condition Encoders. In the denoising process, it is crucial to
use specific conditions as guidance. In the graph-based social recom-
mendation task, in addition to the step information ¢, we introduce
three conditions, including global graph semantics, personalized
information, and cross-domain knowledge signals. Specifically, for
CDM, the reverse process is rewritten as follows:

po(Cralc = | 7

u=1
where gg is the global semantics for the bipartite graph, and we
define it by applying a pooling operation to embedding matrices
E E* . in the collaborative domain (cf. Eq.(25) in Section 3.2.1):

v, B
8)

Here, g g is the graph-level property, which help in understand-
ing the contextual semantics during the denoising process.

polcu,t-1lcu .t g8, hy, 8, Wy 8),

*
u, B
g5 = Pool(E], z) + Pool(E; ).

In Eq.(7), h,, g represents the personalized information condi-
tion, and we directly define it using the user embedding u*jB from
E: 8 in the collaborative domain, as h,, g = u’fB. This condition in-
tuitively reflects user interaction behaviors with items and enables
the denoising module to recognize user preferences.

For the cross-domain knowledge w,, s, it represents the semantic
signals of the user in the social domain, a condition unique to the
social recommendation task. According to social influence and
homophily theories [30, 31], a user’s preferences are influenced by
those of their friends. Based on this, we define w,, g as follows:

Wu, 8 = ZieN;f ZjeNiBj*'B' ©)

wherej% is embedding of item j from E7 g (cf Eq.(25)). Here, we
aggregate the set of items (i.e., NiB ) interacted with by user u’s

social neighbors (i.e., NL‘,S ) as cross-domain guidance.
Similarly, the reverse process in SDM is rewritten as follows:

|U|
py(Se-1lSt) = [ ]2, pyGur-lsu .t 9.5 b s, W 8), - (10)
where g5, h,, s, w,, 5 are the global graph semantics, personalized
information, and cross-domain knowledge signals respectively:

u

gs =Pool(E} o). hy.s =5 wyg= ZieNﬁ, i, 1)
where E’; < is the user social embedding matrix (cf. Eq.(25)), ug is
the user social feature from EZ g and cross-domain signal wy, g is

obtained by aggregating the user interaction history (i.e., NuB )-
o Training. To optimize our CDM and SDM, we define the follow-
ing loss function according to Eq.(4), as:

3. (12)

Lsou = ZU Belllfy (sur- 9 b5 W, 8.8) = suollFl. (13)
where fg and fy represent the denoising neural networks for CDM
and SDM, respectively. We define them using a two-layer feedfor-
ward neural network. Taking fy as an example, its input is the
concatenation of the three conditional embeddings gg, h,, g, and
w,, s, along with ¢, ; and the embedding of step .

U
Leom = 2B fo(cu, 0985 Bu, 8 Wi 85 1) = €u0

3.1.2 Denoised Graph Generation. After training, we gener-
ate denoised interaction and social graphs Gg+ and Gg-. Tak-
ing Gg+ as an example, for each user u, CDM first corrupts ¢y, o
as ¢y,0 — Cy1--+ — €y 1 over T steps in the forward pro-
cess. Then, CDM sets ¢, 7 = ¢, 17 and performs denoising as
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Cu, T — Cy,T—1"+ — €y, for T steps. Since the original interac-
tion data contains noise and to preserve user preference informa-
tion [45], we set T’ < T. Next, for each user’s denoised interaction,
Cu0 = [6111, 55, ce. ,EL(Vl], we design a sampling method to con-
struct the denoised graph. Specifically, for user u, we first select a
set 7,$ containing k. elements based on ¢y, as follows:

7€ ~ Multinomial(ke, 7(é4,0)). (14)

where 7 is the softmax function and Multinomial refers to sampling
k¢ elements based on the probability distribution 7(¢y,¢). We define
k¢ as the number of neighbors user u has in the original graph Gg.

Next, we form a candidate neighborhood from the items corre-
sponding to the elements of set Z,° in ¢;, o and take the intersection
of this candidate neighborhood with user u’s original item neigh-
borhood in Gg to obtain the final neighborhood for constructing
the denoised graph Gg-. Similarly, we apply the same sampling
strategy to construct the denoised social graph Gg-. In this way,
our graph generation preserves important information from the
original graph while performing denoising and filtering.

3.1.3 Cross-Domain Signal Guidance Mechanism. To further
guide our dual DM in generating denoised graphs, Gg+ and G-,
suitable for recommendation, we introduce a signal guidance (SG)
mechanism. This method establishs communication between CDM
and SDM by integrating social signals from SDM into the CDM and
collaborative signals from CDM into the SDM.

Specifically, to optimize Gg-, we first introduce the denoised user
social relation matrix $* from generated Gg- to update the predicted
user-item relation matrices Cy in the CDM denoising process (by
combining the ¢y predicted by fp). Then, we introduce the item
feature matrix EZ 5 (¢f.Eq(25)) and apply the graph convolution to
)= =" COE Next
(cf Eq.(25)) and utilize
KL divergence as a constraint to align user embeddings in Eq.(15).
This operation injects cross-domain information by aligning the
distribution of user embeddings. Similarly, to optimize Gg-, we
introduce the denoised user-item relation matrix Y* from generated
Gg+ and item feature matrix EZ’ g to update user relation matrix

obtain a social-aware user feature matrix Ez(

we introduce user social embeddings E ¢

So in the SDM denoising process (by combining the §g predicted by
fy) and obtain a collaborative-aware user feature matrix Es W =

SOY* E* g- Then, based on Eq.(16), we align EO( ) with the user
collaboratlve feature matrix EZ g (cf Eq.(25)).

1 . . .
Liac) = W(n(Ec(up- (log 7(EL,) ~ log x(E; g))),  (15)

Lius) = g7 (zr(Es(u)) (1ogn(E§(u))-1ogn(Ej;B))). (16)

In summary, the above process uses cross-domain relations and
knowledge from the recommendation module to constrain Cy and
So, thereby optimizing denoised graph. In practice, we exploit batch
data instead of the entire matrix to improve efficiency. In Section
Sections 4.4 and 4.6.2, we validate the effectiveness of this design.

3.1.4 Denoising Module Training. To train this module, we
integrate losses from dual DM and signal guidance mechanism:

Lpenoising = Lcom + Lspm + Lxie) + Lrkus).  (17)

Anon.

3.2 Recommendation Module

In this section, we first introduce our dual graph neural network
(GNN) for recommendation. Then, we describe the diffusion-aware
contrastive learning used for model representation enhancement.

3.2.1 Dual Graph Neural Networks. Based on the generated
denoised interaction graph Gg- and social graph Gg- in Section
3.1.2, we introduce a dual GNN structure to model user prefer-
ences for items. Specifically, given a user u; and an item v, we
apply a bipartite GNN (i.e., AGGg) on graph Gg- to learn their
representations in the collaborative space, as follows:

I (0~ o\ 1
ul 5 = AGGY (ui. Gg+) = kae/vfi Vi (9

1o
= AGGL, (v, Gg-) = u g, (19
} B ( J ) ZukENgj P8,k kB

where pg ik=+/ING, [\ INS, |, ps.jk= /lej IVZ, | are normalization

terms, and NB and NB are neighborhoods for u; and v; in Gg-.
Addltlonally, we use another social GNN (i.e., AGGg) based on
G- to learn the representation of user u; in the social space, as:

1o L _ L
u S—AGGS(ul,gS*)—ZuJGNul e s @

where pg, ;j=+/IN%, | /|N;§j| and le. is u;’s neighborhood in Gg-.

Here, the initial representations of user u; and item v; are de-
noted as u, and vj, and they are used as inputs for the dual GNN
(ie,u; = ul 8= (i),S’ andv; = v0 ) Compared to the standard
GCN [19], we follow the idea in L1ghtGCN [12] and remove the
feature transformation and nonlinear activation. Other models (e.g.,
NGCF [46] and LR-GCCF [2]) can also be employed.

Currently, the bipartite GNN and social GNN independently
model Gg+ and Gg~, overlooking the potential knowledge signal
sharing between them. To capture the interplay between GNNs, we
design a gated interaction (GI) mechanism that leverages the user as
a bridge. Specifically, the GI mechanism takes user representations
u; g from AGGg and u; s from AGG at each layer as inputs, and
then uses a gating mechanism to model their interactions:

1, 1 1 1 1

ui’fg = GI(ui,B’ui,S)[B] =Gg ou; g+ (1-Gg) ou; g (21)
&

u, i)s' = GI(ug’B,uiS)[S] =

1 I 1 1
Gg = a(w%(ui’B Su; s)s Gs= a(wgs(ui s EBui’B)), (23)

Gsoul 4 +(1—G5)®u5’$, (22)

0B u i,S
tures, wg,, Wg are weight matrices, o is the sigmoid function, and
© and @ are the element-wise product and vector concatenation.
We integrate the GI mechanism into the current dual GNN (i.e.,
Eqs.(18)-(20)) to capture the interplay between GNNs, We present

the matrix form of the layer-wise propagation rules, as follows:

where ub® are updated embeddings, Gg,Gs are gated struc-

_1 _1
Ey = [El 4Bl 4]=(D ZAgDBZ)[GI(EL g,El S)IBLEL L],
El =E} ¢ = (D 2ASD )GI(EL 5 El §)ISI. (24)

where Dg,D g are diagonal matrices and Ag, Ag are adjacency
matrices, for corresponding denoised interaction and social graphs;
E, g, Ey 8, and E, g are user collaborative embedding matrix
from AGGg, item collaborative embedding matrix from AGGg,
and user social embedding matrix from AGG g, respectively.
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By incorporating the GI mechanism, we facilitate the exchange of
relevant information between GNN aggregations. We will analyze
the efficacy of this GI mechanism in experiments (cf. Section 4.4).

After L layers of aggregation, we combine the embeddings from
each layer to form user collaborative feature E* "B and social feature

E* ., and item collaborative feature E* ,as follows

uwS’

uB ZIOuB’ u,S~ Z[ous’ v, B~ ZIO’UB 25)

Then, we model the user u;’s preference for item v, as:

A 1 *T % *T _ %
Jij = E(ui,.‘BV',B-"ui,SVj,B)’ (26)
whereu; ,=[E;, z;] oUs= [Eu S]u,’ 8= [E:hﬁ;]vj are feature vectors.

Based on the predlction we define the recommendation loss, as:
Lrec=-), _ log@i) =), _log1-

where © is model parameters and Ar is the regularization strength.

9ij) + Al 1O113. (27)

3.2.2 Diffusion-aware Contrastive Learning. Recommender
models using contrastive learning can effectively enhance model
performance and robustness [20, 56]. We introduce a diffusion-
aware contrastive learning approach. We consider the graphs af-
ter and before denoising in Section 3.1 as contrastive views (i.e.,
(Gg+.Gg)and (Gs+, Gs). We then use the dual GNN in Section 3.2.1
to process these graphs and obtain node representations. Finally,
we treat the representations of the same node in different views as
positive pairs and those of different nodes as negative pairs.

For users in the contrastive views (Gg+,Gg), we define our con-
trastive loss using the InfoNCE [33], as follows:

LCL; = Z —log

u; €U

exp (cos( LN 8)/1')
Sy 1t exp (cos(u} w7 ) /7)

where cos(:, -) is cosine similarity function, 7 is the temperature
hyper-parameter, u* LB and u¥ i g are the representations of user u;

. (28

obtained by processing Gg- and G5 using our dual GNN.
Similarly, we obtain the item contrastive loss in views (Gg+,Gg)
as LCL%E’ and the user contrastive loss in views (Gs+.Gs) as LCLE'
Combining these terms, we get the final loss of diffusion-aware
contrastive task as L¢p, = 'LCLE + ‘ECLE + L s- The effectiveness
of our contrastive learning will be validated in Sections 4.4 and 4.7.

3.2.3 Recommendation Module Training. Our recommenda-
tion module contains two components: a dual GNN and a diffusion-
aware contrastive learning task. To train this module, we integrate
the losses from both components as follows:

= Lrec +AcLLcL, (29)

where hyper-parameter Acy, adjust the contrastive learning strength.

LRecommendation

3.3 Model Optimization

To optimize our GDSR model, we integrate the losses from both the
denoising module (i.e., Eq.(17)) and the recommendation module
(i-e., Eq.(29)). The combined loss is defined as Lgpsr = LDenoising +
LRecommendation- We then alternately train the two loss terms. The
pseudocode for all the optimization procedure, including denoising
and recommendation modules, is provided in Appendix B.
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3.4 Model Complexity and Generalization

We introduce our GDSR’s model complexity and generalization,
and time analysis experiments in Appendix C.

4 Experiment

In this section, we first introduce the experimental setup and then
conduct experiments to analyze the effectiveness of our GDSR

(anonymous code https://anonymous.4open.science/r/GDSR-WWW).

4.1 Experimental Setup

This subsection introduces the datasets, comparison methods, hyper-
parameter settings, and evaluation metrics.

4.1.1 Datasets. We use three real-world datasets: Yelp, Douban,
and Flixster, which are collected from online applications and
widely used in social recommendation. Each dataset contains the
user-item interaction and user social information. More details of
the datasets are in Appendix D.1. For each dataset, we select 60%,
20%, and 20% of interactions as training, evaluation, and test sets,
respectively. Table 1 shows the statistics of the three datasets.

Table 1: Statistical details of the three datasets.

Datasets | # users | # items | # interactions | # social links
Yelp 16,239 14,284 198,397 158,590

Douban 2,848 39,586 894,887 35,770

Flixster 42935 15,816 2,448,110 517,966

4.1.2 Comparison Methods. We compare GDSR with four group
methods: (1) graph-based collaborative recommenders (i.e., LR-
GCCF [2] and LightGCN [12]), (2) graph-based social recommenders
(i.e., GraphRec+ [7] and DiffNet++ [49]), (3) denoising graph-based
collaborative recommenders (i.e., RGCF [40], DDRM [58], AdaGCL
[17]), and (4) denoising graph-based social recommenders (i.e.,
GDMSR [34], DSL [43], GDSSL [20], and RecDiff [22]). The charac-
teristics of these baselines are introduced in Appendix D.2.

4.1.3 Hyper-parameter Settings. For baselines, we implement

them based on their source code. More about the implementation de-
tails are in Appendix D.3. For our GDSR, diffusion step T is tuned

in {2, 5, 10, 20, 50, 100}. For the noise, its scale s, lower bound app,

and upper bound amayx are searched in {107>,107%4,1073,1072, 1071},
{1074,1073,2x 1073}, and {5 x 1073,1072, 2 x 1072}. In the dual

GNN, we set the embedding size as 32 and the aggregation layer as

2. We study the impact of key hyper-parameters in Section 4.5.

4.1.4 Evaluation Metrics. Two scenarios are used to evaluate
the model performance: (1) in the top-k recommendation, precision
(P@K) and recall (R@K) are utilized as the metrics, where K is set
as 10 by default; (2) in click-through rate (CTR) prediction, area
under curve (AUC) and accuracy (ACC) are adopted as the metrics.

4.2 Performance Comparison

Tables 2 and 3 present the model performance on the three datasets.
We find that: (1) Graph-based social recommenders generally out-
perform graph-based collaborative recommenders due to the use
of additional social information. However, this is not always the
case. For example, LightGCN sometimes outperforms DiffNet++
and GraphRec+ on the Yelp and Douban datasets. This suggests that
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social connections might contain noise or irrelevant information.
(2) Denoising collaborative and social recommenders outperform
their respective non-denoising graph-based methods. This further
indicates that irrelevant information in user-item interactions and
social relations could affect user preference modeling. It also high-
lights the necessity of denoising both interaction and social data.
(3) Our GDSR shows superior performance, indicating the effective-
ness of its denoising and recommendation modules. Specifically,
in the top-K recommendation, GDSR outperforms the best base-
lines with a 4.87%, 2.12%, and 1.48% increase in P@10 on the three
datasets, respectively. For CTR prediction, our GDSR achieves aver-
age AUC gains of 2.80%, 2.03%, and 1.88% on the three datasets. We
will discuss the effectiveness of key designs of GDSR in Section 4.4.

Table 2: Top-k recommendation results. * denotes the statis-
tical significance for p < 0.001 compared to the best baseline.

Method Yelp Douban Flixster
P@10 R@10 | P@10 R@10 | P@10 R@10
LR-GCCF | 0.0162  0.0389 | 0.1823  0.0655 | 0.1051  0.1196
LightGCN | 0.0178  0.0415 | 0.1969  0.0684 | 0.1073  0.1224
GraphRec+| 0.0170  0.0394 | 0.1895 0.0662 | 0.1109  0.1263
DiffNet++ | 0.0174  0.0409 | 0.1998  0.0703 | 0.1087  0.1260
RGCF 0.0182  0.0436 | 0.2031  0.0697 | 0.1129  0.1238
DDRM 0.0193  0.0471 | 0.2110  0.0750 | 0.1186  0.1289
AdaGCL | 0.0185 0.0442 | 0.2114 0.0761 | 0.1160  0.1278
GDMSR | 0.0179  0.0420 | 0.2007  0.0708 | 0.1122  0.1265
DSL 0.0195  0.0458 | 0.2059  0.0736 | 0.1174  0.1277
GDSSL 0.0176 ~ 0.0416 | 0.2028  0.0717 | 0.1180  0.1286
RecDiff 0.0187  0.0423 | 0.2086 0.0749 | 0.1195 0.1310
GDSR 0.0206" 0.0497*| 0.2162* 0.0781"| 0.1217* 0.1383"

Table 3: CTR prediction results. * denotes the statistical sig-
nificance for p < 0.001 compared to the best baseline.

Yelp Douban Flixster
Method | — -—3ccTAUC AcC | AUC _ ACC
LR-GCCF | 0.7658  0.7066 | 0.8567 0.7869 | 0.9353  0.8844
LightGCN | 07820  0.7209 | 0.8596 0.7964 | 0.9387  0.8853
GraphRec+| 0.7704 07110 | 0.8609 0.7933 | 0.9472  0.8919
DiffNet++ | 07881  0.7245 | 0.8710 0.7976 | 0.9423  0.8928
RGCF | 0.8011 0.7388 | 0.8655 0.7950 | 0.9436  0.8922
DDRM | 0.8093 0.7492 | 0.8784 0.8015 | 0.9501  0.8937
AdaGCL | 0.8067 0.7397 | 0.8812 0.8101 | 0.9589  0.9005
GDMSR | 0.7996 0.7303 | 0.8732 07998 | 0.9490  0.8934
DSL 0.7933  0.7275 | 0.8798 0.8072 | 0.9517  0.8960
GDSSL | 07950  0.7286 | 0.8763 0.8009 | 0.9544  0.8968
RecDiff | 0.8048 0.7314 | 0.8801 0.8045 | 0.9605  0.9096
GDSR | 0.8160° 0.7520"| 0.8894* 0.8182"| 0.9669* 0.9156"

4.3 Performance w.r.t Sparsity Degrees

This subsection studies the performance of GDSR and several repre-
sentative baselines (i.e., DiffNet++ [49], AdaGCL [17], and RecDiff
[22]) in handling user behavior with varying sparsity levels. Follow-
ing [17, 46, 49], we group users based on the number of interactions
they have in the training set and then evaluate the performance
of these user groups in the test set. Specifically, we divide users
into three groups while trying to maintain a similar total number
of interactions for each group in the test set. We label these groups
based on user interaction density, from low to high, as Group 1,
Group 2, and Group 3. Figure 2 shows the P@10 results. We find that
as interaction density increases, the accuracy of models improves,
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Figure 2: Performance under different sparsity groups.

indicating that high-quality recommendation requires enough user-
item interactions. Moreover, our GDSR achieves the best results,
showing its robust performance in different levels of data sparsity.

4.4 Ablation Study

In this subsection, we conduct ablation experiments to analyze the
key design elements of our GDSR model in detail.

4.4.1 Effect of Model Components. The denoising and the rec-
ommendation modules are two crucial components of our GDSR.
To analyze our denoising module, we consider four operations:

e w/0 CDM: Removing the collaborative diffusion model (CDM).
e w/0 SDM: Removing the social diffusion model (SDM).

e w/o dual DM: Removing the dual diffusion model (dual DM).

e w/0 SG: Removing the signal guidance (SG) mechanism.

For the recommendation module, we consider two operations:

e w/o GI: Removing the gated interaction (GI) mechanism.
e w/o DCL: Removing diffusion-aware contrastive learning (DCL).

Table 4 shows the results for P@10 and AUC. From these results,
we can draw the following conclusions: (1) For the denoising mod-
ule, removing the CDM and/or SDM from the dual DM decreases
model performance. This indicates the presence of noise in inter-
action and social graph data, and demonstrates that our dual DM
improves model performance by denoising the data. Furthermore,
the results validate the effectiveness of the SG mechanism, which
guides the dual DM to better denoise the data. (2) For the recom-
mendation module, the lower performance after removing the GI
module highlights the importance of modeling information inter-
action between our dual GNNs. Additionally, the ablation of DGL
shows that our diffusion-enhanced data augmentation strategy is
crucial for improving model performance. (3) In general, removing
any operation from our GDSR method reduces its performance,
showing the soundness and effectiveness of our model design.

Table 4: Ablation study of key designs in our GDSR.

Operation Yelp Douban Flixster
P@10 AUC | P@10 AUC | P@10 AUC
w/o CDM 0.0197 0.8065 | 0.2096 0.8822 | 0.1205 0.9615
w/o SDM 0.0201 0.8104 | 0.2130  0.8858 | 0.1193 0.9601
w/o dual DM | 0.0182 0.7944 | 0.2021 0.8784 | 0.1128 0.9525
w/o SG 0.0199 0.8094 | 0.2144 0.8887 | 0.1205 0.9653
w/o GI 0.0202 0.8123 | 0.2144 0.8882 | 0.1206 0.9640
w/o DCL 0.0195 0.8112 | 0.2137 0.8873 | 0.1198 0.9624
GDSR 0.0206 0.8160 | 0.2162 0.8894 | 0.1217 0.9669

4.4.2 Plug-In Effect of Denoising Module. We further ana-
lyze our denoising module. This module can be seen as a plug-
and-play component for denoising user-item interaction graphs
and user-user social graphs, thereby enhancing recommendation
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performance. To validate this plug-and-play nature, we integrate
our denoising module into two graph-based social recommenders
DiffNet++ [49] and GraphRec+ [7]. Two methods use both the in-
teraction and social graphs for recommendation. Figure 3 shows
the performance of these two methods, both with and without our
denoising module, on the three datasets. The results show that our
proposed denoising module consistently improves the performance
of two different base models, further validating its effectiveness.

PEEL

5 0.05 0.89
(a) Yelp (b) Douban (c) Flixster

Figure 3: Effect of our denoising module on two different
backbones. In each subfigure, P@ 10 results (red bars) on the
left, while AUC results (blue bars) on the right.

4.5 Hyper-parameter Sensitivity Analysis

In this section, we analyze several important hyper-parameters in
our GDSR. Specifically, we study diffusion step T and noise scale s
in the denoising module, and dual GNN layer size L and diffusion-
aware contrastive learning strength Acy, in the recommendation
module. The results on the Douban dataset are shown in Figure 4.
The observations can be summarized as: (1) Increasing the diffu-
sion step T initially improves performance, but then it leads to
a decrease. In addition, since a larger T increases time costs, we
select T = 10 to achieve a balance between nice performance and
low costs. (2) As the noise scale s increases, performance improves
initially when compared to training without noise, demonstrating
the benefits of graph denoising optimization. However, an exces-
sively high noise scale adversely affects performance. Therefore,
it is crucial to choose a relatively small noise scale s = 1074, (3)
Increasing the number of layer L in dual GNN enhances perfor-
mance to a certain extent, but too many layers will increase the
time complexity. In our experiments, setting L = 2 is a nice choice.
(4) For the contrastive learning strength Acy, setting it too high
can cause the model to overemphasize the contrastive task, which
reduces performance. Conversely, a too-low value may not provide
sufficient self-supervised signals. The nice performance is typically
achieved with Acy, values between 1073 and 1072
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Figure 4: Hyper-parameter sensitivity analysis.

4.6 Anti-Noise Capacity Analysis

We first study the robustness of our GDSR to noisy interaction
and social data. Then, we analyze the denoising effect of GDSR on
several specific cases of user-item interactions and social relations.
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4.6.1 Performance w.r.t. Data Noise Degree. In this subsec-
tion, we analyze the anti-noise capacity of our GDSR. Specifically,
following [17, 22, 40, 43], we replace a certain proportion (i.e., 10%
and 20%) of user-item interactions/user-user social relations with
noise signals in the interaction graph and social graph, while keep-
ing the test set unchanged. For experiments with noise added to
interactions, we compare our GDSR with denoising collaborative
recommenders (i.e., RGCF [40] and AdaGCL [17]). For experiments
with noise added to social data, we compare our model with denois-
ing social recommenders (i.e., DSL [43] and RecDiff [22]). Addition-
ally, we also include DiffNet++ [49] as a baseline. Figure 5 shows
the results on the Douban dataset. Similar results are observed on
other datasets, which are not elaborated here due to space limita-
tions. From the results, we find that: (1) Adding noise to the data
affects model performance. Moreover, adding noise to interaction
data impacts the model more than adding noise to social data, indi-
cating that the model is more sensitive to noise in interaction data
in social recommendations. (2) In scenarios where noise is added
to user-item interactions, the performance of DiffNet++ declines
more than that of RGCF, AdaGCL and, our GDSR. Similarly, when
noise is added to social relations, the performance decline of DSL,
RecDiff, and GDSR is less than that of DiffNet++. This highlights
the importance of anti-noise strategies in maintaining performance.
(3) Compared to denoising baselines, our GDSR shows the smallest
performance drop, indicating that our denoising strategy effectively
mitigates the impact of noise in the interaction and social data.

03 0.4 025 0.06
3 DiffNet++ —@— DiffNet++ =3 DiffNet++ —&— DiffNet++
3 RGCF —4— RGCF 3 psL —4— DSL
0 AdaGCL —> AdaGCL 3 RecDiff —> RecDiff
B GDSR —#- GDSR i’ B GDSR —#- GDSR °
o P o 2,
o
©02 02£ o2l 0.03.5
a ' a '
I 1
o o
01 ; | | 0.0 0.17 - | | 0.00
0% 10% 20% 0% 10% 20%

(a) Interaction Noise Ratio (b) Social Noise Ratio
Figure 5: Model performance w.r.t. interaction and social
noise ratio. The bar represents P@ 10 results and the line rep-

resents the percentage of performance degradation.

4.6.2 Case Study. We aim to further investigate the data denois-
ing of our model through a case study. Specifically, in the Yelp
dataset, we randomly select two pairs of user-item interactions (i.e.,
(u2865, i4298) and (u49¢4, in2gs)) predicted as noise by our model,
and two pairs of user-user social relations (i.e., (1982, i9317) and
(46115, i5443)) also predicted as noise. We introduce the item at-
tribute information (i.e., category and city) to assist in our case
study, as shown in Figure 6. Note that these attributes are not pro-
vided to our model during training, and they are used here solely
for the case study. Figure 6 (a) shows the denoising of user-item
interactions. Based on item attributes and user social neighbors,
we can rank the preferences of a user’s social neighbors for item
attributes. We find that the reason for denoising the interaction
(u2865, i4298) may be because item ig293 does not match user izges’s
social neighbors’ preferences. The same reasoning applies to the
interaction (#4964, i2288). Figure 6 (b) shows the denoising of social
information. We utilize the user’s historical preference for item
attributes for analysis. The reason for denoising the social relations
(u1982, i9317) and (ue115, is443) may be due to the significant differ-
ence in item attribute preferences between the users in each pair.
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The above analysis not only reflects the rationale behind our de-
noising method but also shows that our denoising neural network
(e, fp and fy) and SG mechanism (i.e., Eqs.(15) and (16)) can inject
cross-domain signals into the data denoising process.

{10 of op-3 categor
| 45,328,407
D of top-3 ity

D
P 99,415,323
P R s

User 2865

5,173,426
ciy attribute ID:

407,212,236
ID of top-3 city:

Item 2288

(a) Analysis of Denoised User-Item Interaction Pairs

Figure 6: Case study for our denoising module.

(b) Analysis of Denoised User-User Social Pairs

4.7 Embedding Analysis

In this subsection, we analyze the embeddings generated by our
GDSR. Following [23, 59], we plot the embedding distributions of
items from the Douban dataset utilizing Gaussian kernel density
estimation (KDE) in a 2-dimensional space. We also compare our
GDSR with two social recommender baselines DiffNet++ [49] and
RecDiff [22]. The results are shown in Figure 7. We find that com-
pared to the two baselines, the embeddings learned by our GDSR
are relatively more uniformly distributed. Based on prior research
[42, 59], we believe this result shows the advantage of our model in
modeling the data feature diversity. We attribute this advantage to
our diffusion-aware contrastive learning (i.e., Section 3.2.2). To vali-
date this, we also plot item embeddings generated by GDSRy,0 DCL,
which removes diffusion-aware contrastive learning from GDSR.
We observe that the item embedding distribution of GDSRy,/0 DCL is
less uniform compared to GDSR. This indicates that our contrastive
learning enhances the model representation learning.

- / ’

4 -

(b) RecDiff (c) GDSR (d) GDSR w/o DL

(a) DiffNet++

Figure 7: Embedding analysis for DiffNet++, RecDiff, GDSR.

5 Related Work

This section reviews two relevant research areas: social and denois-
ing recommendation. We discuss another area, contrastive learning
in recommendation, in Appendix E due to the space limitation.

5.1 Social Recommendation

Social recommendation utilizes social information to improve rec-
ommendation performance [39]. Prior research primarily focuses
on employing matrix factorization techniques (e.g., ensemble [27],
co-factorization [11], and regularization [28]) for social recommen-
dation. With the development of deep learning, researchers employ
diverse neural components (e.g., attention networks [1], multilayer
perceptrons [5], and recurrent neural networks [38]) to design social
recommenders. Recently, modeling interaction and social data from
a graph perspective has gained traction. These studies utilize graph
neural networks to enhance representation learning by considering
interaction and social graph structures [7, 8, 45]. However, most

Anon.

social recommenders overlook the handling of noise in user-item
interactions and social data. To this end, inspired by the success
of the diffusion model (DM) in denoising tasks [25, 35, 36, 41], we
design a dual DM to generate denoised user-item interaction and so-
cial graphs. The results show that our denoising method effectively
denoises the recommendation data and improves performance.

5.2 Denoising Recommendation

The performance of recommender models could be limited by the
presence of redundant and noisy data [24, 32, 57]. To address this
issue, current methods are primarily designed from data cleaning
and model perspectives [58]. Data cleaning-based methods often
rely on specific heuristic assumptions to remove noisy data [3, 4] or
assign lower weights to potentially noisy data [34, 44, 47]. However,
this approach reduces the adaptability when the dataset or backend
model changes. Model perspective methods focus on enhancing the
noise resistance of recommenders [9, 43, 48, 51]. However, they typi-
cally depend on a single model to convert noisy data into clean data,
which makes it challenging to identify noise patterns effectively
and places high demands on the model representation capacity. In
this paper, we employ the multi-step denoising idea of diffusion
models (DMs) to denoise data. In recent years, several approaches
explore the use of DMs in recommendation. For example, DiffRec
[45] and DDRM [58] integrate DMs into the modeling of user-item
interactions. However, they focus solely on the collaborative filter-
ing task. RecDiff [22] and GDSSL [20] use DMs to mitigate social
noise. Despite their effectiveness, we believe our GDSR differs from
theirs in two key aspects: First, their methods do not incorporate
condition guidance relevant to the social recommendation task
in their DM design, and they lack specific adaptations tailored to
this task. In contrast, our GDSR employs a dual DM specifically
designed and customized for social recommendation, incorporating
cross-domain guidance strategies (i.e., denoising neural network
and signal guidance mechanism) to more effectively guide the de-
noising process. Second, both methods overlook the noise problem
in the interaction graph, while our GDSR mitigates noise in both
interaction and social graphs, establishing mutual collaboration
between the denoising processes of the two graphs. Experimental
results further show that our GDSR outperforms these methods.

6 Conclusion

In this paper, we propose a graph-based social recommender GDSR,
which consists of two key steps: graph denoising and recommen-
dation prediction. Our GDSR first leverages dual diffusion models
to denoise the user-item interaction and user-user social graphs.
To guide our dual diffusion models, we design a denoising neural
network and a signal guidance mechanism, both of which inject
cross-domain knowledge signals into the diffusion process. Then,
based on the denoised graphs, our GDSR introduces a dual graph
learning structure to learn user and item representations for recom-
mendation. To enhance the robustness of the model representation,
we introduce a diffusion-aware graph contrastive learning task. Ex-
periment results on three real-world datasets show that our GDSR
outperforms several state-of-the-art recommender baselines. For fu-
ture work, we plan to design the latent space diffusion strategy and
acceleration algorithm to improve our GDSR’s training efficiency.
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Appendix

In this appendix, we provide additional details omitted from the
main paper due to the space limitation. We begin with a table
of key notations used in this paper (Appendix A), followed by the
optimization processes (Appendix B), and a complexity analysis and
generalization discussion (Appendix C) of GDSR. Next, we describe
experiment settings in detail (Appendix D). Finally, we introduce
supplementary discussions on the related work (Appendix E).

A. Notation Table
The notations used in this paper are summarized in Table 5.

Table 5: Summary of key notations.

Symbol Explanation
Uu,v user set and item set
Y, S interaction matrix and social matrix
Gs, Gs original interaction graph and social graph
Gg+, Gs+ | denoised interaction graph and social graph
T,s diffusion step and noise scale
u;,v; initial embedding for user u; € U and item v; € V
EZ g E”; g | user and item collaborative embedding matrices
E s user social embedding matrix
AGGg Neighborhood aggregation function for graph Gg-
AGGgs Neighborhood aggregation function for graph Gs-
Jij Predicted user u;’s preference for item v;

B. Optimization of Our GDSR
To optimize our GDSR model, we integrate the losses from both the
denoising module (i.e., Eq.(17)) and the recommendation module

(i-e., Eq.(29)). The combined loss is defined as follows:
Lcpsr = LDenoising + LRecommendation- (30)

We then alternately train the losses of two modules. The pseu-
docodes of our GDSR are introduced in Algorithms 1-4.

Algorithm 1: Optimization procedure of GDSR

Input: User and item sets U and V, interaction matrix Y,
original interaction graph Gg, original social graph
Gs, diffusion step T, inference step T’, fp in CDM,
fy in SDM, recommendation module parameter ©,
numbers of training Iy, and Iyec.
1 for number of iterations for GDSR do

2 for number of training Ty, for denoising do
3 ‘ Train the denoising module (Algorithm 2);
4 end

5 Generate denoised graphs (Algorithm 3);

6 for number of training Tye. for recommendation do

7 ‘ Train the recommendation module (Algorithm 4);
8 end

9 end

Output: User preference prediction function F.

Algorithm 1 alternately optimizes the denoising module and the
recommendation module. Specifically, in each outer loop, we first
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Anon.

train the denoising module using Algorithm 2, then generate the
denoised graph using Algorithm 3, and finally train the recommen-
dation model using Algorithm 4. In this paper, we set the number
of training iterations for both modules as Ije = Iyec = 1.

Algorithm 2: Denoising Module Training of GDSR

Input: Original interaction graph Gg, original social graph
Gs, diffusion step T, fy in CDM, f¢ in SDM, user
collaborative feature EZ &> user social feature E’; s

item collaborative feature EZ 3

o

Sample a user-item interaction batch C, from Gg;

2 Sample a user-user interaction batch S, from Gg;
Sample t ~ U(1,T);

Compute Cy,; given Cy, ;-1 and t via q(Cy, ¢|Cy, t-1);
Compute Sy, ; given Sy, ;-1 and ¢ via ¢(Sy, ¢ |Su, r-1);

©

'S

&

=)

Calculate LDenoising bY Eq'(17);

N

Take gradient descent step on Vg(Lpenoising) and
V (LDenoising) to optimize parameters 0 and i;
Output: Optimized fy and optimized fy.

Algorithm 3: Denoised Graph Generation

Input: User set U, original interaction graph Gg, original
social graph Gg, diffusion step T, inference step T’,
optimized fy in CDM, optimized f; in SDM, user
collaborative feature EZ 5> USer social feature E’; S

1 forallu € U do

2 Sample € ~ N(0,I);
3 Compute ¢, 1 given ¢y,,0, T/, €, and set ¢, 7 = ¢, 17;
4 Compute s, 77 given s, 0, T', €, and set §,, 7 = sy, 77;
5 fort=T,...,1do
6 Compute ¢y, ;-1 from ¢y, ; via fy
7 Compute $y,,;-1 from sy, via fy;
8 end
9 Construct a set of the user denoised interaction
neighborhood based on ¢,,¢;
10 Construct a set of the user denoised social
neighborhood based on $,,o;

11 end

-

2 Construct denoised interaction graph Gg- and denoised
social graph G g+ based on user denoised neighbor sets;
Output: Graph Gg+ and graph Gg-.

C. Model Complexity and Generalization

In this section, we first analyze the model complexity of our GDSR
in terms of model size and time complexity. Then, we discuss the
model generalization of our GDSR.

C.1 Model Size. The model parameter size of our GDSR is from
two parts: (1) For the denoising module, it uses O((2 - |U|) - dgm,)
parameters, where dgy, is the hidden space dimension for the dual
DM. In practice, a smaller dg, (e.g., 32) makes our method achieve
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nice performance. (2) For the recommendation module, it requires
O((|U| + |V]) - dgnn) parameters for user and item embedding
matrices and O(L - dénn) parameters for the weight matrices in
the dual GNN (i.e., from the GI mechanism), where L is the layer
number and dgny is the embedding size in dual GNN. Compared
with embedding matrices, weight parameters are lighter and can
be neglected. Generally, the parameter size of the recommendation
module aligns with many GNN-based social recommenders.

Algorithm 4: Recommendation Module Training of GDSR

Input: Interaction matrix Y, denoised graphs Gg+, Gg+.
1 Initialize all the parameter ® in recommendation module;
2 Draw a batch of interaction data Yj, from Y;
3 forall (u,v) € Y}, do

4 Calculate user and item embeddings (i.e., EZ B E; s
EZ,B) based on Gg+, Gs+ via Eqs.(24) and (25);

5 Calculate the user-item interaction prediction (i.e., §;;
for user u; and item v;) according to Eq.(26);

6 Calculate loss LRecommendation @ccording to Eq.(29) ;

7 Take gradient descent step on Vo(LRecommendation)s
s end
Output: Prediction function ¥ (u,v|0,Y, Gg+, Gs+), user
collaborative features EZ &> user social features

E* ,item collaborative features E* ,.
u,S v, B

C.2 Time Complexity. The time complexity of GDSR comes from
two parts. (1) In the denoising module, our dual DM takes O(b- dgy, -
|U|) time for training, where b is the batch size. In addition, our
SG mechanism introduces O(b? - |U|) time for training. (2) In the
recommendation module, the time complexity of our dual GNN is
O((|Eg+| +1Es])- (L dgnn +L- dénn)), where Eg+ and & g+ are the
edge sets in denoised bipartite and social graphs. For the diffusion-
aware contrastive task, the time cost is O(b - (|Eg+| + |E5+]) - dgnn)-

C.3 Time Efficiency Analysis. In this section, we conduct experi-
ments to further analyze the time efficiency of our GDSR. Following
[22], we record the time cost per epoch during training and the
inference time during testing. We also compare our GDSR with
three representative recommender baselines (i.e., DiffNet++ [49],
AdaGCL [17], and RecDiff [22]). All experiments are conducted on
a Linux server with an Intel(R) Xeon(R) Gold CPU 5218@2.3GHz
and a Quadro RTX 5000 GPU. The experiment results are shown in
Table 5. Generally, during the training phase, we find that AdaGCL,
RecDiff, and GDSR introduce additional time costs for denoising op-
erations compared to traditional graph-based social recommenders
DiffNet++, which is because denoising operation requires additional
time costs. During the testing phase, the inference time required
by the models is similar. Generally, we consider the time costs of
our GDSR to be acceptable. In the future, we plan to design the la-
tent space diffusion strategy and acceleration algorithms to further
improve the training efficiency of our GDSR.

C.4 Model Generalization. In this paper, we propose a social
recommendation model GDSR, which includes a denoising module
and a recommendation module. GDSR first denoises the interaction
and social graphs, and then generates recommendations based on

11

WWW, 28 April - 2 May 2025, Sydney, Australia

Table 6: Running time efficiency analysis about the training
time per epoch and testing time (s: second).

Yelp Douban Flixster
Method Train Test Train Test Train Test
DiffNet++ | 4.552s  1.095s | 26.553s 8.832s | 75.603s 41.847s
AdaGCL | 102.480s 1.028s | 203.869s 7.696s | 1175.386s 36.756s
RecDiff 9.972s  0.881s | 31.279s 7.314s | 103.485s 35.555s
GDSR 16.911s 0.980s | 78.674s 9.224s | 451.197s 40.503s

the denoised graphs. Although we introduce a specific recommen-
dation module, we believe that the denoising module in GDSR does
not rely on a particular backend recommender model. It can be inte-
grated into other social recommenders to enhance performance. For
example, experiments in Section 4.4.2 show that after incorporating
our denoising module, both GraphRec+ [7] and DiffNet++ [49] back-
bones achieve improved results, demonstrating the generalization
capability of the denoising module. Beyond the backbone model,
we also believe that the proposed idea of the dual graph diffusion
model can be generalized to other recommendation scenarios.

D. Experiment Details

In this section, we provide details on the datasets, comparison
methods, and hyper-parameter settings of comparison methods.

D.1 Datasets. We evaluate our experiments on the three real-world
datasets from different domains: Yelp business dataset[15], Douban
book dataset[55], and Flixster movie dataset!. All datasets contain
user-item interaction information and social connections between
users. The social connections in the Douban dataset are unilateral
trust relationships, which means that when user A trusts user B,
user B does not necessarily trust user A. Yelp and Flixter datasets
have a friendship mechanism that is bilateral for both users.

D.2 Comparison Methods. We compare our GDSR with four
group recommendation methods: (1) graph-based collaborative rec-
ommenders (i.e., LR-GCCF [2] and LightGCN [12]), (2) graph-based
social recommenders (i.e., DiffNet++ [49] and GraphRec+ [7]), (3)
denoising graph-based collaborative recommenders (i.e., RGCF [40],
DDRM (58], and AdaGCL [17]), and (4) denoising graph-based so-
cial recommenders (i.e., GDMSR [34], DSL [43], GDSSL [20], and
RecDiff [22]). We also note that DiffRec [45] and SGL [48] are denois-
ing collaborative recommenders. Since DDRM outperforms DiffRec,
and both AdaGCL and RGCF achieve better results than SGL, we do
not include comparisons with DiffRec and SGL in our experiments.
The descriptions for these baselines are listed as follows:

o LR-GCCEF utilizes graph neural networks (GNNs) to model the
user-item interaction bipartite graph. LR-GCCF first simplifies
GNN s by removing non-linear activations, and then introduce a
residual network structure for embedding combinations.

e LightGCN, similar to LR-GCCF, also models the user-item in-
teraction graph using a simplified GNN structure. Light GCN
removes activation functions and linear transformations, relying
solely on neighborhood aggregation for layer-wise propagation.

o GraphRec+, is an upgraded version of GraphRec [6], which uses
GNNs to model the interaction graph, social graph, and item
relation graph constructed based on collaborative similarities.

!https://www.flixster.com/
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o DiffNet++, an enhanced version of DiffNet [50], uses graph at-
tention networks to model the user-item interaction graph and
social graph separately.

e RGCF introduces a denoising method to alleviate noise issues
from the user-item interaction graph, and then models user pref-
erences for items based on the denoised interaction graph.

e DDRM applies diffusion models to denoise user and item embed-
dings. In this experiment, we use DDRM+SGL as the instantiation
of DDRM due to its notable performance reported in their paper.

o AdaGCLis a graph collaborative filtering-based denoising method
that incorporates data augmentation through graph denoising
and generative model-based view generators.

o GDMSR designs a preference-guided graph denoising network
to denoise the social graph, which generates recommendations
based on the denoised social graph and user-item interaction
information. We use DiffNet++ as the backend model for GDMSR.

e DSL alleviates noise issues in the social graph using a cross-
view denoised self-supervision method and optimizes the rec-
ommender model using a multi-task learning strategy.

e GDSSL utilizes a diffusion model to generate a social subgraph
structure. It then designs a contrastive learning task based on
this subgraph to enhance the model representation learning.

o RecDiff applies a diffusion model to denoise user representa-
tions derived from the social graph, then combines the denoised
representations with user-item interaction modeling.

D.3 Hyper-parameter Settings. Except for GraphRec+ [7] and
GDSSL [20], all other baselines provided their code in their papers.
For GraphRec+, we implement it based on the code in GraphRec
[6]. For GDSSL, we implement this method ourselves. The settings
of key hyper-parameters of these baselines are as follows:

e LR-GCCF: GNN layer size L = 3, embedding size d = 64.

o LightGCN: GNN layer size L = 3, embedding size d = 64.

o DiffNet++: GNN layer size L = 2, embedding size d = 64.

e GraphRec+: GNN layer size L = 1, MLP layer size L’ = 2, embed-
ding size d = 64, item similar neighbor size k = 10.

e RGCF: GNN layer size L = 2, embedding size d = 64, diversity
loss coefficient A1 = 0.000001, temperature 7 = 0.1.

o DDRM: embedding size d = 64, diffusion step T = 10 (on Yelp
and Flixster) or T = 20 (on Douban), noise scale s = 0.001, loss
balance factor A = 0.2, reweighted factor y = 0.9.

e AdaGCL: GNN layer size L = 2, embedding size d = 32 (on
Douban, Flixster) or d = 64 (on Yelp), SSL strength A; = 0.1 (on
Yelp, Douban) or A; = 0.01 (on Flixster), temperature 7 = 0.5.

o GDMSR: GNN layer size L = 2, embedding size d = 32, co-
optimization weight @ = 0.5, adaptive denoising factor y = 0.5.

e DSL: GNN layer size L = 2, embedding size d = 32 (on Douban
and Flixster) or d = 64 (on Yelp), SSL strength A; = 0.00001 (on
Yelp and Douban) or A; = 0.000001 (on Flixster).

e GDSSL: GNN layer size L = 2, embedding size d = 64, diffusion
step T = 10, SSL and social task strength A; = 0.01, A = 0.01.

o RecDiff: GNN layer size L = 2, embedding size d = 64, timestep
embedding dim d” = 16, diffusion step T = 20, noise scale s = 0.1.

E. Contrastive Learning in Recommendation

In recent years, contrastive learning (CL) has emerged as a promis-
ing approach to enhance recommender systems [18, 56]. CL-based
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recommendation methods utilize additional supervision signals ex-
tracted from raw data, which can mitigate the data sparsity problem
and improve model performance. The construction of contrastive
views is crucial for CL-based recommenders. One line of current
research [48, 53] uses data augmentation to create more views from
the original data, while another line of studies [48, 52, 55] focuses
on mining different views that exist in the data. Our GDSR aligns
more closely with the first research line. Specifically, we first use
diffusion models to enhance the original interaction bipartite graph
and social graph, obtaining denoised graph structures. We then
contrast the representations of user and item nodes in the graph
before and after denoising. The node self-discrimination could pro-
vide auxiliary supervision signals for recommendation. We believe
our diffusion-aware data augmentation paradigm will contribute
to the advancement of CL-based recommender systems.
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